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Abstract 
The climate impact of bioenergy is commonly quantified in terms of CO2 equiva-
lents, using a fixed 100‐year global warming potential as an equivalency metric. This 
method has been criticized for the inability to appropriately address emissions timing 
and the focus on a single impact metric, which may lead to inaccurate or incomplete 
quantification of the climate impact of bioenergy production. In this study, we intro-
duce Dynamic Relative Climate Impact (DRCI) curves, a novel approach to visualize 
and quantify the climate impact of bioenergy systems over time. The DRCI approach 
offers the flexibility to analyze system performance for different value judgments 
regarding the impact category (e.g., emissions, radiative forcing, and temperature 
change), equivalency metric, and analytical time horizon. The DRCI curves con-
structed for fourteen bioenergy systems illustrate how value judgments affect the 
merit order of bioenergy systems, because they alter the importance of one‐time (as-
sociated with land use change emissions) versus sustained (associated with carbon 
debt or foregone sequestration) emission fluxes and short‐ versus long‐lived climate 
forcers. Best practices for bioenergy production (irrespective of value judgments) 
include high feedstock yields, high conversion efficiencies, and the application of 
carbon capture and storage. Furthermore, this study provides examples of production 
contexts in which the risk of land use change emissions, carbon debt, or foregone 
sequestration can be mitigated. For example, the risk of indirect land use change 
emissions can be mitigated by accompanying bioenergy production with increasing 
agricultural yields. Moreover, production contexts in which the counterfactual sce-
nario yields immediate or additional climate impacts can provide significant climate 
benefits. This paper is accompanied by an Excel‐based calculation tool to reproduce 
the calculation steps outlined in this paper and construct DRCI curves for bioenergy 
systems of choice. 
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1 | INTRODUCTION 

Biomass is an important renewable energy source in climate 
change mitigation strategies, particularly for sectors relying 
on energy‐dense liquid fuels, such as aviation, shipping, and 
long‐haul trucking (Rose et al., 2014; World Wildlife Fund, 
2011). The conventional approach to quantify the climate 
change mitigation value of bioenergy is based on cradle‐to‐
grave life‐cycle assessment (LCA) of greenhouse gas (GHG) 
emission fluxes (GHG‐LCA), often using the 100‐year global 
warming potential as an equivalency metric to convert non‐
CO2 emissions into CO2 equivalents (equivalency metrics are 
also commonly referred to as normalized (emission) metrics or 
characterization factors). This method is widely employed to 
compare system performance and to determine the compliance 
of bioenergy systems to sustainability standards or policies. 

In the context of bioenergy, the conventional GHG‐LCA 
approach is criticized for its treatment of time‐dependent 
emission profiles and the related climate impacts (Cherubini, 
Bright, & Strømman, 2013; Daystar, Venditti, & Kelley, 
2017; Kendall, Chang, & Sharpe, 2009; Levasseur et al., 
2016; Levasseur, Lesage, Margni, Deschenes, & Samson, 
2010; O’Hare et al., 2009). The net emission profile of bio-
energy production is determined by (a) the cradle‐to‐grave 
life‐cycle production emissions, (b) the displaced (fossil) 
emissions, (c) direct emissions from, for example, carbon 
stock changes in the feedstock production area, and (d) in-
direct emissions from market‐mediated effects. Emission 
fluxes from the latter two effects are generally time‐depen-
dent, particularly when land clearing is involved (instigat-
ing land use change (LUC) emissions) and/or long‐rotation 
feedstocks are used (e.g., forestry biomass; Cherubini, 
Bright, & Strømman, 2012; Cherubini, Peters, Berntsen, 
Strømman, & Hertwich, 2011; O’Hare et al., 2009; Porsö, 
Hammar, Nilsson, & Hansson, 2017; Zetterberg & Chen, 
2015). These emission fluxes are measured against the ini-
tial carbon stocks or the carbon stocks in a counterfactual 
scenario in which no bioenergy is produced. The conven-
tional GHG‐LCA approach often employs linear amortiza-
tion of carbon stock changes, measured relative to the initial 
carbon stocks, over an arbitrary production period (Kendall 
et al., 2009). Alternatively, a parity point can be calculated 
at which emissions of bioenergy production equal the emis-
sions of the counterfactual scenario (Lamers & Junginger, 
2013). However, both methods neglect the fact that the cli-
mate impact of GHGs increases with the atmospheric resi-
dence time and may therefore lead to incomplete conclusions 
about (relative) system performance and the timing of cli-
mate mitigation benefits (Cherubini et al., 2013; Daystar et 
al., 2017; Kendall et al., 2009; Levasseur et al., 2016, 2010 
; O’Hare et al., 2009). The use of discount rates (Hellweg, 
Hofstetter, & Hungerbuhler, 2003; Levasseur et al., 2010; 
O’Hare et al., 2009) and time correction factors (Kendall 

et al., 2009; Schwietzke, Griffin, & Matthews, 2011) have 
been proposed; however, the former does not have a physical 
basis in climate science, and the latter is unable to consider 
prolonged temporal variability of emission profiles. 

Moreover, the use of a single performance indicator, as 
defined by the impact category, equivalency metric, and ana-
lytical time horizon used in the conventional approach, does 
not reflect the complexity of the climate system (Cherubini 
et al., 2016). The climate impact can be quantified accord-
ing to different impact categories along the cause‐effect chain 
(i.e., GHG emissions, radiative forcing, temperature change, 
and climate damages) at or over different analytical time hori-
zons for instantaneous and cumulative metrics, respectively 
(Cherubini et al., 2013, 2016 ; Levasseur et al., 2016). The 
impact categories exhibit different temporal responses to 
emission pulses, which affects the impact of emission tim-
ing (Cherubini et al., 2013; Kendall et al., 2009; O’Hare et 
al., 2009; Schwietzke et al., 2011). Similarly, the choice of 
equivalency metric affects the relative importance of short‐
lived to long‐lived emission species (Cherubini et al., 2016). 
Additionally, the analytical time horizon determines the cutoff 
point of the analysis, thus excluding impacts beyond a certain 
time. The choice of performance indicator therefore contains 
a value judgment about the weighting of one‐time versus sus-
tained emission fluxes and short‐ versus long‐lived climate 
forcers, and can thus benefit or disadvantage the evaluation 
of systems with a particular emission profile (IPCC, 2014). 

Bioenergy systems demonstrate a wide variety of emis-
sion profiles, in terms of both emission species and timing. 
Therefore, it is necessary to appropriately treat time depen-
dencies and value judgments in bioenergy GHG‐LCA to be 
able to properly quantify and compare the performance of 
bioenergy systems. Various authors have proposed meth-
ods to incorporate one of the aforementioned aspects in 
LCA. Some studies focus on dynamic performance indica-
tors to incorporate time‐dependent emission profiles, such 
as the fuel warming potential (O’Hare et al., 2009), car-
bon neutrality factor (Schlamadinger, Spitzer, Kohlmaier, 
& Lüdeke, 1995; Zanchi, Pena, & Bird, 2012), or relative 
carbon indicator (Pingoud, Ekholm, Soimakallio, & Helin, 
2016). Other authors have proposed alternative equivalency 
metrics, which vary in equivalency base, time horizon, and 
type of time horizon (time‐dependent or fixed; Cherubini 
et al., 2013; Cherubini et al., 2016; Cherubini et al., 2012; 
Edwards & Trancik, 2014; Edwards, McNerney, & Trancik, 
2016; Kendall, 2012; Levasseur et al., 2010; Peters, Aamaas, 
Marianne, Solli, & Fuglestvedt, 2011). In addition, several 
studies have quantified the performance of bioenergy sys-
tems for different impact categories, such as radiative forc-
ing, temperature change, and economic damages (Ericsson et 
al., 2013; O’Hare et al., 2009; Porsö et al., 2017; Schwietzke 
et al., 2011; Withers, Malina, & Barrett, 2015; Zetterberg & 
Chen, 2015). 
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Building upon prior efforts, we aim to quantify the cli-
mate impact of bioenergy systems over time using Dynamic 
Relative Climate Impact (DRCI) curves. The DRCI quanti-
fies the net climate impact of a production system relative to 
a fossil baseline over time. It is therefore not a climate impact 
category or equivalency metric (such as the global warming 
potential, GWP), but rather a means to express the climate 
impact of bioenergy systems over time using existing climate 
impact categories and equivalency metrics. 

To the best of our knowledge, the DRCI approach is the 
first which enables consistent comparison of the climate 
impact of bioenergy systems with different time‐dependent 
emission profiles, while offering the flexibility to compare 
the effects of value judgments regarding the impact category, 
analytical time horizon, and equivalency metric. The use of 
DRCI curves was illustrated for various bioenergy systems 
with different temporal emission profiles to study the im-
pact of different emission profiles and value judgments. A 
reduced‐order climate model was employed to translate emis-
sion profiles into impact categories and quantify the asso-
ciated scientific uncertainty. This paper is accompanied by 
an Excel‐based calculation tool (see Supporting Information 
Material), which allows users to reproduce the calculation 
steps outlined in this paper and construct DRCI curves based 
on emission profiles of a system of choice. 

The remainder of this paper is structured as follows. 
Section 2 introduces the DRCI curves using a generalized 
approach and demonstrates the approach for three bioenergy 
systems. Section 3 discusses the DRCI results and quanti-
fies the scientific uncertainty associated with climate im-
pact modeling. Section 4 introduces variations on the three 

T A B L E  1  Overview of impact indicators for bioenergy systems 

Indicator Equation Impact category Reference 

Conventional GHG‐LCA 

Net GHG emission reduction GHGbio −GHGcf GHG emissions 

Relative GHG emission reduction GHGbio −GHGcf

GHGbase 

GHG emissions 

This study 
Climate impactbio(t)−Climate impactcfDynamic relative climate impact  

Climate impactbase (t)(DRCI) 

(t) All climate impact categories This study 

Existing time‐dependent performance indicators 
∑ 

(t)Carbon neutrality factor Cbio 1− ∑ 
Ccf (t)

Carbon stock Schlamadinger et al. 
(1995) 

∑ 
GHGbio (t)1− ∑ 
GHGcf(t) 

GHG emissions Zanchi et al. (2012) 
∑ 

(t) Carbon balance indicator Cbio 
∑ 

Ccf (t)∕DF 
Carbon stock Pingoud et al. (2016) 

∑ ∑ 
(t)− (t)Cumulative radiative forcing balance RFbio RFcf

∑ 
RFcf(t) 

∑ 
RFbio (t) Fuel warming potential 

∑ 
RFcf (t) 

Cumulative radiative forcing 

Cumulative radiative forcing 

Schwietzke et al. 
(2011) 

O'Hare et al. (2009) 

bioenergy systems in scope to quantify the relative impor-
tance of emission sources (e.g., life‐cycle emissions, LUC 
emissions, carbon debt, and foregone sequestration) and 
identify best practices for bioenergy production. Section 5 
discusses the merits and limitations of the DRCI approach 
and the implications for the evaluation of bioenergy systems. 

2 | MATERIALS AND METHODS 

2.1 | Introducing dynamic relative climate 
impact curves 
Table 1 provides an overview of existing impact indicators. 
In conventional GHG‐LCA, the climate impact of bioenergy 
systems is often evaluated using the net GHG emission re-
duction or relative GHG emission reduction. The net GHG 
emission reduction is calculated by subtracting the life‐cycle 
emissions of the bioenergy system (bio) by the emissions of 
a counterfactual scenario (cf). The latter includes life‐cycle 
emissions of the displaced (fossil) product(s) and, if system 
expansion is used, potential co‐products. The relative GHG 
emission reduction performance is quantified by dividing the 
net GHG emission reduction by the GHG of a fossil baseline, 
for example, electricity, diesel, or gasoline. 

The Dynamic Relative Climate Impact (DRCI) was de-
fined analogous to the relative GHG emission reduction 
(Equation (1)). The DRCI plotted over time (the “DRCI 
curve”) quantifies the net climate impact of a production sys-
tem relative to a fossil baseline over time. It is therefore not 
a climate impact category or equivalency metric (as exten-
sively covered by others [Cherubini et al., 2013; Levasseur et 

Note. base: baseline scenario; bio: bioenergy scenario; cf: counterfactual scenario; DF: displacement factor, that is, units of fossil fuel displaced by one unit of biomass; 
GHG: greenhouse gas emissions; RF: radiative forcing. 
The scope of emission species and fluxes covered in the counterfactual and bioenergy scenario may vary between authors. 
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al., 2016]), but rather a means to express the climate impact 
for bioenergy systems over time using existing climate im-
pact categories and equivalency metrics. 

Dynamic Relative Climate Impact, DRCI(t) 

Climate impactbio(t)− Climate impactcf(t) (1)= 
Climate impactbase(t) 

A negative DRCI value implies that the bioenergy sce-
nario has a climate benefit over the counterfactual scenario. 
For example, an DRCI value of −0.5 indicates a 50% re-
duction in a particular impact category relative to the fossil 
baseline. 

The relative formulation was selected over the net climate 
impact, as a dimensionless parameter allows for comparison 
between DRCI curves based on different impact categories. 
Moreover, the scientific uncertainty associated with climate 
models converges when the numerator and denominator in 
Equation (1) are of the same order of magnitude, since the 
uncertainty grows approximately proportional to the climate 
impact (see Section 3). 

Unlike the indicators used in conventional GHG‐LCA, 
the DRCI is time‐dependent (dynamic) and thus requires 
the definition of an analytical time horizon at which the 
impact category is evaluated (t = TH ). The choice of THaa 

can be tailored to the aim of the analysis. Unlike previ-
ously proposed time‐dependent performance indicators 
listed in Table 1 (O’Hare et al., 2009; Pingoud et al., 2016; 
Schlamadinger et al., 1995; Schwietzke et al., 2011; Zanchi 
et al., 2012), the DRCI definition allows for the use of dif-
ferent impact categories. Furthermore, it is defined relative 
to a fossil baseline instead of the counterfactual scenario 
to allow for comparison of production systems with differ-
ent counterfactual scenarios. As such, the main value of the 
DRCI is that it is able to compare systems with varying 
temporal emission profiles and evaluate the effect of key 
value judgments regarding the time horizon, impact cate-
gory, and equivalency metric. 

In the following section, the DRCI curve approach will 
be demonstrated for three bioenergy systems with different 
temporal emission profiles to study the impact of different 
emission profiles and value judgments. The calculation steps 
are also featured in an Excel model which accompanies this 
paper (see Supporting Information Material). 

2.2 | Demonstrating the DRCI curve 
approach for three bioenergy systems 
The three bioenergy systems in scope were selected based 
on their distinct emission profile (Table 2). These systems 
are also featured in the calculation tool in the Supporting 
Information Material. The systems are stylized examples cho-
sen to demonstrate the use of DRCI curves for systems with T
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different emission profiles, and therefore may contain simpli-
fying assumptions and may be optimistic (e.g., UCO‐HEFA) 
or pessimistic (e.g., ATJ‐SC) compared to the most common 
biofuel production contexts. For example, the production con-
texts of the systems considered here were set such that no indi-
rect emissions were induced, as quantifying indirect emissions 
over time requires economic modeling (e.g., general equi-
librium modeling) and involves considerable uncertainties 
(Wicke, Verweij, van Meijl, van Vuuren, & Faaij, 2012). The 
selected systems produce 10 PJ/year middle‐distillate (MD) 
transport fuels (gasoline, diesel, and/or jet fuel) on a com-
mercial scale destined for the US market. The HEFA‐UCO 
system is based on full hydrodeoxygenation of used cooking 
oil, a residue from the food industry. The FT‐DWD system 
employs gasification and Fischer–Tropsch synthesis based on 
downed woody debris (DWD) from loblolly pine. The ATJ‐
SC system is based on the Alcohol‐to‐Jet technology, which 
converts alcohols (in this case sugarcane ethanol) to MD fuels 
through dehydration, oligomerization, and hydrogenation. 
Hydrogen consumption in the HEFA‐UCO and ATJ‐SC case 
is covered by steam methane reforming of natural gas. 

2.3 | Dynamic life‐cycle inventory 

2.3.1 | Generalized approach 
Given the DRCI is a time‐dependent performance indicator, 
it requires a dynamic life‐cycle inventory (LCI) which con-
tains time‐dependent inventory of emission fluxes, grouped 
by emission species (denoted with subscript i) (Daystar et 
al., 2017; Levasseur et al., 2010; O’Hare et al., 2009). A 
separate LCI exists for the bioenergy and counterfactual sce-
nario, which represent alternative futures diverging from the 
production start year (t0). The LCI is defined from t0 to the 
LCI time horizon (THLCI) (O’Hare et al., 2009). If THLCI is 
longer than the production time horizon (THp), postproduc-
tion emission fluxes (e.g., regrowth) should be included. 

The LCI of the bioenergy scenario (bio) consists of life‐
cycle production emissions (Elcbio,i), direct emissions in the 
biomass production area (Edirbio,i), and indirect emissions 
from market‐mediated effects (Eindbio,i) (Equation (2)). Direct 
emissions may include, for example, methane emissions from 
wetland drainage, or carbon stock changes from LUC or car-
bon debt. Indirect emissions may occur when increased crop 
production for bioenergy purposes affects global agricultural 
and fuel markets and instigates additional emissions in other 
sectors. Indirect LUC emissions are a prominent example 
of a market‐mediated effect, whereby bioenergy production 
induces land conversion elsewhere, for example, due to in-
creasing commodity prices. Biogenic combustion emissions 
in the bioenergy scenario should be included in Elci or be ac-
counted for in Edirbio,i (i.e., adding the combustion emissions 
to the carbon sequestration due to feedstock growth). 

The counterfactual scenario (cf) represents the antici-
pated future scenario in which no bioenergy is produced. It 
includes the life‐cycle emissions of the main (fossil) prod-
ucts directly displaced by the produced quantity of bioen-
ergy (Edmpcf,i), direct emissions in the biomass production 
area (Edircf,i), and indirect emissions (Eindcf,i) (Equation 
(3)). Direct emissions in the counterfactual scenario often 
involve foregone sequestration, which includes the future 
sequestration that would have occurred in the intended 
biomass production area if no bioenergy was produced. If 
system expansion is used, emissions from displaced co‐
products should also be considered in the counterfactual 
scenario (Edcpcf,i). If mass, energy, or market value alloca-
tion is used for co‐product allocation, this allocation proce-
dure should also be applied to direct and indirect emissions 
in both scenarios (Cherubini et al., 2009). 

System performance is often benchmarked against a 
fossil baseline to calculate the relative reduction and allow 
for comparison among systems. In biofuel regulation 
such as the US Renewable Fuel Standard 2 (RFS2) or EU 
Renewable Energy Directive (RED), the fossil baseline (or 
“fossil comparator”) is often predefined based on average 
emission factors for a benchmark fossil product. In the cur-
rent dynamic formulation, the fossil baseline is assumed 
constant over time and includes life‐cycle emissions of the 
benchmark product (Elcbase,i) (Equation (4)). 

LCI(t)bio,i = Elcbio,i(t)+ Edirbio,i(t)+Eindbio,i(t) (2) 

LCI (t)cf,i = Edmpcf,i(t) +Edcpcf,i(t)+Edircf,i(t) +Eindcf,i((3)t) 

LCI(t)base,i = Elcbase,i (4) 

In the formulation in Equations (2)–(4), sequestration is 
considered a negative emission. Unlike customary practice to 
allocate the difference in carbon stock between the bioenergy 
and counterfactual scenario entirely to the bioenergy scenario 
(see e.g., Zanchi et al.’s, 2012 carbon neutrality factor), the 
dynamic LCI presented above tracks actual emissions to the 
atmosphere in both scenarios. This distinction is required to 
calculate impact categories further down the cause‐effect 
chain, due to the nonlinear relation between GHG emissions 
and these impacts. 

2.3.2 | Dynamic life‐cycle inventory for the 
bioenergy systems in scope 
Based on Equations (2)–(4), a dynamic LCI was con-
structed for the bioenergy systems in scope. The LCI 
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comprised CO2, CH4, and N2O emissions for the bioen-
ergy and counterfactual scenarios and fossil baseline for 
THp = THLCI = 100 years (Figure 1 and Table 3). The 
emissions were summed by emission species and quanti-
fied per MJ of MD fuels. Biogenic emissions (from e.g., 
biomass or biofuel combustion) were assumed equal to 
the carbon sequestration from feedstock growth within the 
same year on a landscape level and were hence omitted 
from the LCI. 

Life‐cycle emissions and displaced emissions were cal-
culated using the Greenhouse gases, Regulated Emissions 
and Energy use in Transportation model (GREET.net 
v.1.3.0.13107) (Argonne National Laboratory, 2018), using 
system expansion and cradle‐to‐grave supply chains de-
scribed in de Jong et al. (2017). Life‐cycle emissions were 
assumed constant over THp and THLCI. The fossil base-
line was based on emission factors for diesel‐type fuels 
as defined in the US RFS2 (US Environmental Protection 
Agency, 2010). 

For simplicity, direct emissions were assumed to in-
clude carbon stock changes only. For the ATJ‐SC sys-
tem, carbon stock changes were modeled using the 
Lund‐Potsdam‐Jena with Managed Land (LPJml) model 
within the Integrated Model to Assess the Global 
Environment (IMAGE) (Supporting Information Material 
S1) (Daioglou et al., 2017). The model tracks changes 
in above‐ and belowground carbon, carbon in soil litter, 
and soil carbon. The analysis uses the yearly average car-
bon stock of the grassy cerrado grid cells in Brazil. The 
model was run from 2020 to 2100, after which carbon 
stocks were assumed to stabilize. The sugarcane bagasse 
was used to produce electricity and heat, while sugarcane 
straw was assumed to be burnt in the field (Han, Dunn, 
Cai, Elgowainy, & Michael, 2012). Sugarcane yield was 
obtained from the LPJml model and was kept constant 
at 2015 levels (199 GJ/ha). The irregular behavior of the 
emission curves in Figure 1 is a result of the interpolation 
of IMAGE results, which uses a 5‐year time step. The ini-
tial spike in emissions in the bioenergy scenario is caused 
by LUC emissions from land clearing. The remainder of 
emissions is due to loss of soil organic carbon over time. 
The counterfactual scenario shows negative Edir emis-
sions due to foregone sequestration, since it was assumed 
that carbon stocks were not yet in equilibrium at the start 
of the project. 

The FT‐DWD case used DWD from a loblolly pine for-
est in which carbon stocks were assumed in equilibrium 
on a landscape level, hence no carbon stock changes were 
considered in the counterfactual scenario. The removal 
of DWD in the bioenergy scenario causes a carbon debt 
relative to the counterfactual in which DWD is left to 
decay. The portion of remaining DWD in the counterfac-
tual scenario was approximated using an exponential decay 

function Mass(t) = Mass0 exp ( −kt), in which k equals the 
annual decay rate (k = 0.041 for loblolly pine) (Russell et 
al., 2014). The carbon debt over time due to continuous 
extraction was computed by the convolution of the yearly 
extraction rate and the decay function. The carbon content 
of DWD was assumed to be 50% of total mass and constant 
over time. It was further assumed that belowground carbon 
was not affected by the extraction of DWD and all carbon 
in the biomass decays as CO2 (no CH4 was produced). As 
shown in Figure 1, continuous extraction of DWD in the 
bioenergy scenario causes a large reduction in carbon stock 
initially, until a new equilibrium is reached after approxi-
mately 100 years. 

2.4 | Quantifying the climate impact of 
emission profiles 

2.4.1 | Generalized approach 
The impact of GHG emissions on the earth’s climate can be 
evaluated for different impact categories along the cause‐
effect chain (Figure 2). The emission of GHGs changes 
the atmospheric concentration of the respective species. 
GHGs are naturally removed from the atmosphere at a 
species‐specific rate due to interactions with the atmos-
pheric, terrestrial, and oceanic system. The emission con-
centration in the atmosphere instigates a net change in the 
energy balance of the earth system (“radiative forcing”), 
which consequently causes a change in global mean sur-
face temperature (“temperature change”). The temperature 
response is delayed due to the inertia of the climate system 
(e.g., thermal inertia of oceans). Temperature change, in 
turn, may be related to impact categories such as sea level 
rise and welfare loss. Compared to other climate impact 
categories, GHG emissions are quantified with more cer-
tainty and regulated more easily. Moving down the cause‐
effect chain generally increases the policy relevance, but 
also increases the scientific uncertainty (Cherubini et al., 
2013). 

Conventional GHG‐LCAs and parity point analyses 
generally evaluate system performance at the GHG emis-
sion level. The conversion of emission profiles to other im-
pact categories can be done using complex climate models 
(Joos et al., 2013), reduced‐order climate impact models 
(e.g., MAGICC (Meinshausen, Raper, & Wigley, 2011), 
ACC2 (Tanaka et al., 2007), or APMT‐IC (Mahashabde 
et al., 2011; Wolfe, 2015)), or following simpler rela-
tionships between the indicators as demonstrated in the 
Excel model (see Supplementary Information Material) 
and described in various sources (Cherubini et al., 2013; 
Ericsson et al., 2013; Myhre & Shindell, 2014; O’Hare et 
al., 2009). Equivalency metrics are often used to translate 
the impact of non‐CO2 emissions into CO2 equivalents. 

https://GREET.net
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 F I G U R E  1  Dynamic LCI of three bioenergy systems in scope, showing instantaneous CO2 emissions 

Climate efficacies can be used to align the temperature As the climate response extends beyond the time of the 
response of species‐induced radiative forcing (Cherubini emission discharge, it is required to define the analytical time 
et al., 2013). horizon, THa, at which the impact category is evaluated. The 
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System HEFA‐UCO FT‐DWD ATJ‐SC 

BaselineScenario Bioenergy Counterfactual Bioenergy Counterfactual Bioenergy Counterfactual 

LCICO2 
(t) (g/MJMD) 30 99 Time‐dependent (Figure 1) Time‐dependent (Figure 1) 89 

LCICH4 
(t) (g/MJMD) 0.12 0.19 0.020 0.22 0.20 0.20 0.094 

LCIN2O(t) (mg/MJMD) 3.4 3.1 4.1 4.6 38 3.6 2.2 

    

 

  

 
 
 

 

 
 
 
 

 

 
 

 
 
 
 
 

 

 
 
 
 

 
 
 
 

  

  

  

 

 

T A B L E  3  LCI for CO2, CH4, and N2O for three bioenergy systems 

F I G U R E  2  Cause‐effect chain for GHG emissions (adapted from Cherubini et al., 2013) 

THa often exceeds the production and LCI time horizon (THp
and THLCI). 

2.4.2 | Quantifying the climate impact of the 
bioenergy systems in scope 
The climate module of the Aviation Environmental Portfolio 
Management Tool (referred to as APMT‐Impacts Climate 
(APMT‐IC)) was used to calculate impact categories from the 
dynamic LCIs described in Section 2.2. APMT‐IC is a reduced‐
order climate model which models the physical and monetary 
impacts of CO2, CH4, N2O, sulfates, soot, NOx, and H2O emis-
sions. Although the toolset, its algorithm, and assumptions have 
been well documented and used in numerous previous studies 
(Barrett et al., 2012; Mahashabde et al., 2011; Stratton, Wolfe, 
& Hileman, 2011; Trivedi, Malina, & Barrett, 2015; Withers 
et al., 2015, 2014; Wolfe, 2012, 2015 ), it has recently under-
gone a number of updates to align with the state of the science. 
Therefore, the methods for APMT‐IC used in this study are pre-
sented in the Supporting Information Material S3. For current 
purposes, the use of APMT‐IC was confined to CO2, CH4, and 
N2O emissions. The equivalency metrics to equate CO2, CH4, 
and N2O emissions were calculated with APMT‐IC. Climate 
efficacies were obtained from the Model for Assessment 
of Greenhouse Gas Induced Climate Change (MAGICC6) 
(Meinshausen et al., 2011). The model was run using an RCP 
2.6 background emission scenario. The impact of using an RCP 
8.5 scenario is discussed in Supporting Information Material S4. 

The quantification of climate impacts beyond GHG 
emissions introduces scientific uncertainty related to cli-
mate impact modeling parameters, such as the climate 
sensitivity and radiative efficacies of emission species 
(Cherubini et al., 2013, 2016; Levasseur et al., 2016; 
Reisinger, Meinshausen, & Manning, 2011). APMT‐IC 

captures this type of uncertainty using Monte Carlo sim-
ulation, in which key model parameters were varied using 
predefined probabilistic distributions (Wolfe, 2015). The 
climate impact was calculated using the mean and 5th and 
95th percentile results. For sake of clarity, only the mean 
values are shown in the results section; the associated un-
certainty is addressed separately in Section 3.2. 

2.5 | Quantifying the DRCI 

2.5.1 | Generalized approach 
The DRCI can be quantified for different impact categories 
and equivalency metrics. The choice of impact category af-
fects the impact of emission timing, while the choice be-
tween cumulative and instantaneous impact categories 
affects the value of one‐time versus sustained emissions 
(Cherubini et al., 2013; Kendall et al., 2009; O’Hare et al., 
2009; Schwietzke et al., 2011). For example, cumulative im-
pact categories generally respond more slowly to emission 
events compared to instantaneous impact categories, because 
they record all impacts over the analytical time horizon. The 
choice of equivalency metric affects the relative importance 
of short‐lived to long‐lived emission species (Cherubini et 
al., 2016). Due to the flexible formulation of the DRCI, it can 
be used to analyze the effect of these value judgments on the 
climate impact of bioenergy systems. 

2.5.2 | Quantifying the DRCI of the 
bioenergy systems in scope 
The DRCI curves for the three bioenergy systems were con-
structed for three existing climate impact categories, based 
on their distinct temporal response: 
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1. Cumulative emissions using a fixed GWP100 as an equiv-
alency metric (DRCIEm,cum), 

2. Instantaneous radiative forcing using climate efficacies 
(DRCIRF,inst), 

3. Cumulative temperature change (DRCIΔT,cum). 

The change in instantaneous radiative forcing is faster than 
cumulative emissions, as it depends on emission concentra-
tions which include emission decay mechanisms. Radiative 
forcing also responds faster than temperature change, as tem-
perature response is delayed due to the inertia of the climate 
system (Withers et al., 2015). 

A comparison of different equivalency metrics to com-
pute DRCIEm,cum can be found in Supporting Information 
Material S2, as the effect on system performance was small 
compared to the choice of impact category and analytical 
time horizons. 

3 | RESULTS 

3.1 | Climate impact and analytical time 
horizon 
Figure 3 shows the DRCIEm,cum, DRCIRF,inst, and DRCIΔT,cum 
for the three bioenergy systems in scope. The DRCI curves 
for HEFA‐UCO are relatively constant over time and across 
the three impact categories, due to its stable emission pro-
file. The DRCI curves for ATJ‐SC start high initially 
(DRCIEm,cum = 39.6), but decline rapidly as the impact of up-
front LUC emissions fades over time. The FT‐DWD system 
shows a steady decline, because the emission pulses associ-
ated with carbon debt are generally less irregular over time 
compared to initial LUC emissions. The DRCI curves start to 
stabilize after 100 years, as the THLCI is reached. 

The choice of impact category affects observed system 
performance, particularly for systems with time‐dependent 
emission profiles such as the ATJ‐SC and FT‐DWD sys-
tems. For example, the ATJ‐SC system reduces instanta-
neous radiative forcing by 9% relative to the fossil baseline 
after 100 years, while it increases cumulative temperature 
change by 50% over the same analytical time horizon. Due 
to their distinct temporal response, the choice of impact 
category also alters the importance of one‐time versus 
sustained emissions. Systems with large initial LUC emis-
sions, such as ATJ‐SC, yield lower DRCI values when 
evaluated based on instantaneous and rapidly responding 
impact categories (i.e., instantaneous radiative forcing), 
compared to cumulative and slowly responding impact cat-
egories (e.g., cumulative temperature change). This applies 
to a lesser extent to systems with sustained emissions (e.g., 
FT‐DWD and HEFA‐UCO), as their overall climate impact 
is less dependent on the weighting of one‐time emission 
events. As a result, the choice of impact category affects 
the comparison between systems with one‐time and sus-
tained emissions. 

As stipulated in prior analyses, the choice of impact cate-
gory also affects the relative importance of short‐ and long‐
lived emission species (Cherubini et al., 2016; Levasseur 
et al., 2016). For example, instantaneous radiative forcing 
emphasizes the importance of short‐lived forcers compared 
to cumulative emissions, especially in the first years. This 
effect is illustrated for FT‐DWD by comparing DRCIEm,cum 
and DRCIRF,inst at THA = 0, at which the bioenergy sce-
nario shows higher CO2 emissions than the counterfactual, 
but lower CH4 and N2O emissions. As the DRCIRF,inst allo-
cates a higher weighting to CH4 and N2O savings than the 
DRCIEm,cum, the former is lower (0.80) than the latter (1.07). 
This effect is less prominent for HEFA‐UCO, because 

F I G U R E  3  DRCI curves for three bioenergy systems for cumulative greenhouse gas emissions, instantaneous radiative forcing, and 
cumulative temperature change as a function of the analytical time horizon (THA) 
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 F I G U R E  4  The scientific uncertainty associated with climate impact modeling for the FT‐DWD system 

amplification of CH4 and N2O emissions savings is coun-
teracted by a decreased impact of CO2 savings. The choice 
of equivalency metric also affects the relative importance 
of short‐ versus long‐lived species, but has a smaller impact 
on overall system performance than the impact category and 
time horizon (Supporting Information Material S2). 

3.2 | Scientific uncertainty 
Figure 4 shows the 5th and 95th percentile results of 
APMT‐IC for the FT‐DWD system. For absolute cli-
mate impacts, the scientific uncertainty is substantial and 
grows over time; for example, for cumulative temperature 
change at THA = 100 years, the 5th and 95th percentile re-
sults range between −37% and +52% of the mean result. 
However, the uncertainty reduces to ±5% for the DRCI 
(i.e., relative to a fossil baseline), because the uncertainty 
in the numerator of the DRCI is paired with the uncertainty 
in the denominator and increases approximately propor-
tionally. The uncertainty in the DRCI grows with increas-
ing absolute difference between the numerator and the 
denominator (not with time), albeit marginally (the maxi-
mum uncertainty equaled ±10% for a dummy run in which 
the ratio between the numerator and the denominator was 
defined 100,000 times larger). Similar converging behav-
ior has been observed for uncertainty related to different 
background emission concentration scenarios (Supporting 
Information Material S4). DRCI curves can therefore be 
used to study the effect of bioenergy production on a wide 
range of impact categories (with higher policy relevance) 
without dramatically increasing the uncertainty associated 

with climate impact modeling and background emission 
concentration. 

4 | VARIABILITY IN BIOENERGY 
SYSTEMS 

This section evaluates alternative systems based on the 
FT‐DWD and ATJ‐SC systems to quantify the relative im-
portance of emissions sources and identify best practices 
for bioenergy production. The analysis includes variations 
in life‐cycle emissions, LUC emissions, carbon debt, and 
foregone sequestration. The fossil baseline remained the 
same throughout all analyses. The various systems are dis-
cussed in more detail in Supporting Information Material 
S1. 

4.1 | FT‐DWD 
Four alternative systems were considered for FT‐DWD: 

• FT‐DWD‐CCS. This system applies carbon capture 
and storage (CCS), lowering life‐cycle emissions by 
108 gCO2/MJMD (Kreutz, Larson, Liu, & Williams, 
2008). 

• FT‐DWD‐HighDecay and FT‐DWD‐LowDecay. These 
systems use DWD from tree species with the highest 
(k = 0.076; water oak) and lowest (k = 0.023; red pine) 
decay rates observed in Eastern US forests, which affects 
the overall carbon debt (Russell et al., 2014). 

• FT‐DWD‐CFBurn. This system assumes a counterfactual 
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 F I G U R E  5  Alternative production systems based on FT‐DWD 

scenario in which the DWD is burnt in the forest without 
energy recovery, for example, to prevent forest fires. No 
carbon debt is included in the bioenergy scenario, because 
the biogenic carbon of the DWD is also released immedi-
ately in the counterfactual scenario. 

The results shown in Figure 5 indicate that the application of 
CCS yields the lowest DRCI values after 27–49 years (depend-
ing on the impact category), as it offsets the carbon debt with 
carbon storage. The impact of carbon debt would not be visible 
in conventional GHG‐LCA, as temporal emission fluxes (apart 
from LUC emissions) are usually not incorporated. However, 
the results show that the counterfactual scenario or selected tree 
species may affect system performance considerably, especially 
for shorter analytical time horizons. The spread in DRCI val-
ues as a result of different decay rates varies between −0.70 
and 0.02 for DRCIRF,inst (THA = 50 years) and −0.35 and 0.30 
for DRCIΔT,cum (THA = 50 years). The DRCI curve for the FT‐
DWD‐CFBurn system is relatively constant and is less than −1 
for all THA and impact categories, which means that it has a net 
negative climate impact. 

4.2 | ATJ‐SC 
Seven alternative production systems were considered for 
ATJ‐SC: 

• ATJ‐SC‐CCS. This system applies CCS to the fermenta-
tion step, lowering life‐cycle emissions by 27 gCO2/MJMD 
(Möllersten, Yan, & Jose, 2003). 

• ATJ‐SC‐5th and ATJ‐SC‐95th. These systems cultivate 
sugarcane on Brazilian cerrado soils with low and high 
carbon stocks (the 5th and 95th percentile of the carbon 
stock distribution within the cerrado biome), leading to 0.1 
and 2 times the LUC emissions compared to the mean (in 
terms of t CO2/ha). 

• ATJ‐SC‐TropicalForest and ATJ‐SC‐Abandoned. These 
systems assume cultivation of sugarcane on an average 
grid cell (in terms of carbon stock) in the tropical forests 
and abandoned agricultural land biomes. Whereas the for-
mer system instigates high initial LUC emissions, the latter 
system assumes significant amounts of foregone sequestra-
tion from regrowth of natural vegetation in the counterfac-
tual scenario. 

• ATJ‐SC‐LUCPrevention. This system assumes bioenergy 
production is accompanied by measures to prevent indirect 
LUC emissions (e.g., by increasing agricultural yields or 
improving supply chain efficiencies (Brinkman, Wicke, 
Gerssen‐Gondelach, van der Laan, & Faaij, 2015)) such 
that additional sugarcane is produced on existing sugar-
cane land without increasing life‐cycle emissions or caus-
ing direct or indirect LUC emissions. These measures are 
not implemented in the counterfactual scenario. 

• ATJ‐SC‐ImprovedYield. This system assumes sugarcane 
yield on cerrado land improves to 2050 levels (266 GJ/ 
ha), based on IMAGE‐LPJml projections (Daioglou et al., 
2017). 

The results in Figure 6 indicate that a profound difference 
exists between converting low‐carbon or high‐carbon cer-
rado, for which DRCI values vary between −0.11 and 1.01 for 
DRCIRF,inst (THA = 50 years) and 0.20 and 2.85 for DRCIΔT,cum 
(THA = 50 years). The difference mainly originates from higher 
initial LUC emissions for the high‐carbon cerrado case, which 
also explains the larger difference between the systems when 
evaluated using DRCIΔT,cum. 

Sugarcane cultivation on cerrado, abandoned agricultural 
land, or tropical forest shows comparable DRCI curves, be-
cause high LUC emissions are mitigated by high sugarcane 
yields (and vice versa). Furthermore, foregone sequestration 
creates a large carbon sink in the counterfactual scenario 
of the ATJ‐SC‐Abandoned system, leading to higher DRCI 
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 F I G U R E  6  Alternative production systems based on ATJ‐SC 

values over longer time horizons. This effect is particularly 
apparent for DRCIRF,inst; the ATJ‐SC‐Abandoned system ini-
tially has a lower DRCI values than ATJ‐SC (base case) and 
ATJ‐SC‐TropicalForest due to low initial LUC emissions, but 
gradually shows a higher DRCIRF,inst due to foregone seques-
tration. This example also shows how the choice of perfor-
mance metric may change the merit order of systems and why 
foregone sequestration effects are important when assessing 
system performance. 

If LUC emissions can be prevented, DRCI values are re-
duced to approximately −0.7 across all impact categories and 
time horizons (ATJ‐SC‐LUCPrevention system). This under-
lines the importance of LUC prevention measures to achieve 
high climate impact reductions using bioenergy. The applica-
tion of CCS shifts the DRCIEm,cum curve of the ATJ‐SC sys-
tem by −0.42 for all THA. Improvements in sugarcane yield 
reduce DRCI values particularly for short THA, as carbon 
stock changes (particularly initial LUC emissions) are lower 
because less land is required to produce the same quantity of 
biofuel. 

5 | DISCUSSION 

5.1 | The use of DRCI curves 
DRCI curves are time‐dependent and are able to incorporate 
the temporal emission profiles associated with LUC emis-
sions, carbon debt, and foregone sequestration. Therefore, 
DRCI curves are suitable to analyze a wide array of bioen-
ergy systems. It also allows for a transparent comparison of 
bioenergy systems using different impact categories (includ-
ing equivalency metrics) and analytical time horizons. Due to 
its ratio formulation, it is relatively robust to scientific uncer-
tainties in climate impact modeling and background emission 
concentration scenarios. An Excel‐based calculation model 

is provided in the Supplementary Information Material to re-
produce the calculation steps outlined in this paper and con-
struct DRCI curves for bioenergy systems of choice. 

DRCI curves provide more flexibility than conventional 
performance indicators, such as the relative GHG emission 
reduction and carbon parity point, which are essentially one‐
dimensional in terms of the point of evaluation. The rela-
tive GHG emission reduction method often employs linear 
amortization of initial LUC emissions over an amortization 
period. This approach is mathematically equivalent to eval-
uating the DRCI for cumulative emissions at an analytical 
time horizon equal to the amortization period (e.g., 30 years), 
with the relevant exception that the DRCI formulation also 
includes emission fluxes beyond the first year of the project 
(e.g., from foregone sequestration). The carbon parity point 
is the analytical time horizon for which the DRCI for cumu-
lative emissions equals zero. The DRCI can therefore be used 
for direct comparison between the relative GHG reduction, 
carbon parity point, and indicators using a different point of 
evaluation (Figure 7). 

Moreover, DRCI curves can be used to illustrate how 
the choice of impact category and analytical time hori-
zon alters the merit order of systems. For instance, the FT‐
DWD‐HighDecay system has higher DRCI values than the 
HEFA‐UCO system when evaluated using conventional in-
dicators, while it has a lower DRCIEm,cum from 78 years on-
wards. The ATJ‐SC‐CCS and FT‐DWD‐LowDecay systems 
yield similar carbon parity points (63 and 66 years, respec-
tively), while FT‐DWD‐LowDecay shows lower DRCI val-
ues for the first 147 years in terms of cumulative temperature 
change. 

In addition, DRCI curves quantify the climate benefits of 
a system over time, which enables the definition of an “eli-
gibility quadrant” (Figure 7a,b). The eligibility quadrant is a 
two‐dimensional threshold which can be used to determine 
whether a bioenergy production system is below a maximum 
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F I G U R E  7  Comparison of DRCI curves with the relative GHG emission reduction (triangles; amortization period 30 years) and carbon 
parity point (circles). The eligibility quadrants were placed at a DRCI = −0.35 and THA = 100 years (left) and DRCI = −0.60 and THA = 30 years 
(right) 

DRCI value before a given analytical time horizon, as defined 
by a policy or certification scheme of interest. The defini-
tion of these thresholds and the type of impact category they 
apply to have a significant impact on the eligibility of differ-
ent bioenergy systems, especially those with time‐dependent 
emission profiles. For instance, placing the eligibility quad-
rant at DRCIEm,cum = −0.35 and THA = 100 years would 
qualify ATJ‐SC‐CCS as eligible, while cumulative tempera-
ture is increased by 8% relative to the baseline (Figure 7a). 
Alternatively, the HEFA‐UCO system is the only system 
meeting DRCI values below −0.6 before THA = 30 years, 
while the FT‐DWD‐HighDecay system has lower DRCI val-
ues over longer analytical time horizons for all impact cate-
gories (Figure 7b). 

The choice of impact category, analytical time hori-
zon, and equivalency metric is essentially a value judg-
ment about the importance attributed to one‐time (e.g., 
LUC emissions) versus sustained (e.g., carbon debt or 
foregone sequestration) emission fluxes and short‐ versus 
long‐lived climate forcers. Similarly, the definition of the 
eligibility quadrant and the type of climate impact cate-
gory required to meet the threshold are value judgments 
that should be made in accordance with the research or 
policy purpose. Shorter analytical time horizons allocate 
more weight to short‐term emission events, while short 
analytical time horizons for equivalency metrics allocate 
more weight to short‐lived climate forcers (Cherubini et 
al., 2016). Longer analytical and production time horizons 
will yield lower DRCI values, as the climate impact of the 
bioenergy systems in scope generally improves over time. 

Cumulative impact categories keep memory of short‐lived 
emission species and one‐time emission pulses (e.g., from 
LUC), but are also criticized for not reflecting the actual 
climate response (Cherubini et al., 2013; Levasseur et al., 
2016). The choice for instantaneous impact categories can 
be aligned with a peaking or stabilization year of the re-
spective impact and may be well suited for goal‐setting 
(Edwards & Trancik, 2014; Levasseur et al., 2016). Impact 
categories further down the cause‐effect chain introduce a 
time lag in the analysis due to delayed climate response, 
but may be a better proxy for climate damages such as ex-
treme weather events, sea level rise, and loss of permanent 
ice (Edwards & Trancik, 2014; Levasseur et al., 2016). 
Although the current study focused on midpoint impact 
categories, the DRCI curve approach may also be used for 
endpoint impact categories such as economic damage or 
sea level rise. 

Besides bioenergy systems, DRCI curves can also be used 
to evaluate and compare other climate change mitigation 
measures, particularly those with time‐dependent emission 
profiles and relatively large upfront emissions, such as elec-
tric vehicles, wind turbines, or solar panels. 

5.2 | The limitations of DRCI curves 
The flexibility of DRCI curves is a key strength; however, 
it should be calculated and applied consistently to allow for 
comparison between analyses. An Excel‐based calculation 
model was added to the Supplementary Information Material 
to allow users to replicate the approach used in this study. The 
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DRCI value is a relative measure and therefore does not pro-
vide information on the absolute climate impact of a bioenergy 
system. Multiplication by the climate impact of the fossil base-
line yields an estimate of the absolute climate impact; how-
ever, this comes with greater scientific uncertainty. The use 
of DRCI curves is particularly valuable for systems with time‐
dependent emission profiles. However, adequate quantifica-
tion of direct and indirect emissions requires comprehensive 
models, which may complicate the practical implementation 
of the DRCI approach. Moreover, the definition of counterfac-
tual scenarios is a delicate exercise, as it may have a significant 
impact on the results (as e.g., shown by FT‐DWD‐CFBurn). 

The scope of climate forcers can be expanded to include 
surface albedo, surface roughness, evapotranspiration, and 
additional emissions species such as sulfates, soot, NOx, and 
H2O emissions (Cherubini et al., 2016). The impact of these 
effects may be of the same order of magnitude as GHG emis-
sion fluxes, either in a positive or negative direction (Caiazzo 
et al., 2014; Simmons & Matthews, 2016). Several of these 
issues require climate models with higher spatial and tempo-
ral resolution than those used in this study, especially because 
the location and timing of direct and indirect effects may vary 
between the bioenergy and counterfactual scenario. 

5.3 | Implications for bioenergy 
production systems 
The impact of LUC emissions, carbon debt, and foregone 
sequestration on the performance of bioenergy systems 
is significant and may in some cases exceed the impact of 
life‐cycle emissions (Fargione, Hill, Tilman, Polasky, & 
Hawthorne, 2008; Searchinger et al., 2008; Valin et al., 
2015). Feedstock–technology systems with high feedstock 
yields and conversion efficiencies mitigate the contribution 
of LUC emissions, carbon debt, and foregone sequestration, 
while the application of CCS can reduce the life‐cycle emis-
sions significantly. 

The occurrence of LUC emissions, carbon debt, or fore-
gone sequestration is driven by the production context rather 
than the feedstock–technology combination. The production 
contexts of the analyzed bioenergy systems were intention-
ally framed to contain these types of emissions for the sole 
purpose of demonstrating the impact of temporal emission 
profiles. These systems should therefore not be interpreted as 
typical bioenergy system with the most probable counterfac-
tual scenario. 

Direct LUC emissions can be reduced by producing bio-
energy feedstocks on low carbon stock soils. The risk of 
indirect LUC emissions and carbon debt can be mitigated 
by shaping the right production context, for instance, by 
supplementing bioenergy production with efforts to opti-
mize land/forest management, improve agricultural yields, 
increase supply chain efficiencies, and integrate bioenergy, 

food, and feed production (Brinkman, Wicke, & Faaij, 2017; 
Gerssen‐Gondelach, Wicke, Borzęcka‐Walker, Pudełko, & 
Faaij, 2016; Jonker, Junginger, & Faaij, 2014; Peters et al., 
2016; van de Staai et al., 2012; Wicke et al., 2012). The 
Shared Socioeconomic Pathways 1 (SSP 1) scenario rep-
resents such a storyline, in which land use for biomass pro-
duction increases alongside a reduction in land use for food 
production caused by high agricultural yield improvements, 
changing food consumption patterns and low population 
growth (Doelman et al., 2018). Furthermore, production 
contexts in which the counterfactual scenario yields imme-
diate or additional climate impacts (e.g., burning of forestry 
residues to prevent forest fires) can yield highly negative 
DRCI values. As DRCI curves incorporate these time‐de-
pendent emission fluxes, it is a valuable approach to select 
production contexts in which bioenergy systems consis-
tently show a climate benefit, as shown, for example, in the 
ATJ‐SC‐LUCPrevention and FT‐DWD‐CFBurn systems. 

The importance of time‐dependent emission fluxes and 
the production context suggests that bioenergy GHG‐LCAs 
and bioenergy policy frameworks should move beyond 
the static characterization of the cradle‐to‐grave life‐cycle 
emissions of feedstock–technology combinations, toward a 
time‐dependent characterization of the bioenergy produc-
tion context, including carbon stock changes, (in)direct LUC 
emissions, realistic counterfactual scenario(s), and time‐de-
pendent parameters such as feedstock yield or carbon in-
tensities of fossil products. The predictive character of such 
analysis introduces additional uncertainties that should be 
addressed appropriately, for example, by scenario analysis 
or using probability distributions (Supporting Information 
Material S5 discusses the issue of the potential and likelihood 
of bioenergy systems). 

This analysis further demonstrates the importance of eval-
uating bioenergy system performance using different impact 
categories and analytical time horizons, which particularly 
applies to systems with time‐dependent emission profiles. 
For example, the impact of initial LUC emissions on system 
performance will be greater when considering cumulative 
and slowly responding impact categories or shorter analyti-
cal time horizons. We found that the choice of equivalency 
metric did not significantly affect the DRCI value for the bio-
energy systems in scope, but can be important when a large 
difference in non‐CO2 emissions exists between the bioen-
ergy and counterfactual scenario (Supporting Information 
Material S2). This may apply to systems associated with high 
fertilizer use (emitting N2O), methane leakage (e.g., biogas), 
or peatland conversion (emitting CH4). 
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